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SUMMARY

The modi�ed Laplacian has been used to move unstructured grids in response to changes in the surface
grid for a variety of grid movement applications including store separation, aero-elastic wing deformation
and free surface �ow simulations. However, the use of the modi�ed Laplacian can result in elements
with negative areas=volumes, because it has no inherent mechanism to prevent inversion of elements.
In this paper, the use of a modi�ed Laplacian is studied analytically for a two-dimensional problem of
deforming the inner circle of two concentric circles and for a three-dimensional problem of deforming
the inner sphere of two concentric spheres. By analysing the exact solution for this problem, the amount
of translation and deformation of the inner circle that maintains a valid mesh is determined. A general
grid movement theorem is presented which determines analytically the maximum allowable deformation
before an invalid mesh results. Under certain circumstances, the inner circle and sphere can be expanded
until it reaches the outer circle or sphere, while remaining a valid grid, and the inner circle and sphere
can be rotated by an extreme amount before failure of the mesh occurs. By choosing the exponent to the
modi�ed Laplacian appropriately, extreme deformations for single frequency deformations is possible,
although for practical applications where the grid movement has multiple frequencies, choosing the
optimal exponent for the modi�ed Laplacian may not be practical or provide much improvement. For
grid movement simulations involving rigid body translation and rotation or uniform expansion, the
modi�ed Laplacian can yield excellent results, and the optimum choice of the modi�ed Laplacian can
be analytically determined for these types of motions, but when there are multiple frequencies in the
deformation, the modi�ed Laplacian does not allow much deformation before an invalid grid results.
Copyright ? 2006 John Wiley & Sons, Ltd.
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1. PROBLEM DEFINITION

The two-dimensional domain consists of two concentric circles. The inner circle has a radius
of 1 unit and the outer circle has a radius of R, which is greater than 1, as is shown in
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164 C. BURG

Figure 1. The inner circle is deformed by a scalar d(�), while the outer circle is �xed. The 3D
domain similarly consists of 2 concentric spheres, where the inner sphere is deformed by a
scalar d(�; �). The use of the modi�ed Laplacian for grid movement applications provides
a scalar solution which represents an amount of deformation, but the interpretation of this
deformation is problem dependent. The deformation can represent a translation in the x- or
y-directions, a growth or contraction of the inner circle in the radial direction, or a rotation. In
each case, the deformation within the interior of the domain is determined from the boundary
de�nition and the choice of modi�cation to the Laplacian. If the inner circle is to be translated
by a constant amount A in the x-direction or if the radius of the inner circle is to increase
by a constant amount A, the solution of this Laplacian will be the same for these two cases,
because the boundary de�nition of a displacement value of A is the same. However, the
interpretation of the result is di�erent.
The Laplacian is being studied in this report, as well as a modi�ed Laplacian. In particular,

since this is a radial symmetric problem, the modi�ed Laplacian includes a factor of r raised
to some exponent, or

∇ · (rq∇d)=0 (1)

If q=0, then the traditional Laplacian is recovered. Converting this equation to polar coordi-
nates in 2D, the modi�ed Laplacian can be written as
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and to spherical coordinates in 3D, the modi�ed Laplacian can be written as
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The solution of the Laplacian will consist of a radial component and a series of solutions based
on a frequency decomposition. In order to determine the maximum allowable deformation, a

r = 1 

r = R 

Figure 1. Two concentric circles with radii of 1 and R.
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theorem is needed to determine analytically when the deformation in the grid results in an
invalid mesh. This theorem deals with the gradient of the solution to the Laplacian dotted into
the direction of the deformation. Only two deformation directions will be considered, since
these are the limiting cases—deformation in the radial direction only and deformation in the
rotational direction only. Translations can be viewed as a combination of a radial component
and a rotational component.
In the next section, a brief review of grid movement algorithms is given, followed by a

general grid movement theorem that de�nes the limitations of grid movement. Then, the 2D
Laplacian is studied in regards to determining the limitations of grid movement, followed
by an analysis of the 2D modi�ed Laplacian and the 3D modi�ed Laplacian. Computational
veri�cation is performed on the 2D case, where the behaviour of the modi�ed Laplacian
for single frequency deformations is studied. Finally, a brief presentation of the similarities
between the modi�ed Laplacian and the linear spring analogy for a perfect grid between two
concentric circles is given, and the modi�ed Laplacian is compared with a variant of the
Laplacian used in a space–time=�nite-element �ow solver.

2. OVERVIEW OF GRID MOVEMENT ALGORITHMS

The motion of grids is required for several di�erent types of computational simulations,
including aero-elastic motion of wings and other deformable surfaces acted upon by exter-
nal or internal forces, motion of objects moving relative to one another such as for storage
separation simulations, deformation of movable interfaces between immiscible �uids, such as
the water=air interface for simulation of �ow past ships, and shape-based design optimization,
where the shape of the object changes with the goal of optimizing some performance criterion.
In each of these cases, the motion of the grid di�ers signi�cantly. For instance, when two
objects are moving relative to each other, the surface of the objects are typically not deform-
ing, and the motions can be considered as rotations and translations. For aero-elastic motion
of wings, the surfaces deform, and the interior grid must be moved to match the surfaces, but
surface to surface interactions may not exist. For water=air interface simulations around ships,
the water=air interface changes shape, and the intersection of this interface with the ship’s hull
changes along with the interior grid. The motion of the aero-elastic wings and of the water=air
interface simulations, along with the shape-based numerical design optimization, involve more
motions than just translation and rotation, because of the higher frequency components of the
motion. These higher frequency components severely restrict the application of certain grid
movement strategies, including the use of the Laplacian and modi�ed Laplacian.
The various grid movement strategies can be classi�ed into six general categories:

1. Algebraic transformations.
2. Trans-�nite interpolation.
3. The Laplacian and modi�ed Laplacian.
4. The linear elasticity equations.
5. The linear spring analogy.
6. The torsional spring analogy.

For some types of applications, algebraic transformations are quite acceptable. For instance,
if the e�ects of small changes in the shape of an isolated wing are being studied, where the
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changes are given by an algebraic function, then the deformation of the wing’s surface as
well as the grid in the computational domain can be applied via an algebraic transformation.
Trans-�nite interpolation, or TFI, is widely used within structured grids to interpolate the

surface deformations into a structured grid. This methodology is computationally e�cient, easy
to code and highly e�ective, but it cannot be directly applied to unstructured grids without
signi�cantly altering the generality a�orded by unstructured grids.
The Laplacian and modi�ed Laplacian have been used to propagate surface deformations

within the interior grid. Lohner [1] used a modi�ed Laplacian to propagate the deformations
on the air/water interface into the volume grid where the sti�ness coe�cient varied with the
distance from the viscous surfaces, which is similar to the modi�ed Laplacian with q= − 1.
Crumpton and Giles [2] used a modi�ed Laplacian where the sti�ness was inversely propor-
tional to the cell area=volume. Their choice for the sti�ness is roughly equivalent to a value
of q= − 2 in 2D and q= − 3 in 3D. Masud and Hughes [3] used a variant of the Laplacian,
which will be analysed in detail in a later section, and is shown to be more restrictive than
the optimal modi�ed Laplacian.
The linear elasticity equations, which are a superset of the Laplacian, are gaining wider

acceptance as a robust grid movement strategy [4–6]. The linear elasticity equations are

∇ · (� tr(�(d))I + 2��(d))=0 (4)

where d is the displacement vector, tr( ) is the trace operator, � and � are the Lam�e constants,
I is the identity tensor, and �(d) is the strain tensor given by

�(d)= 1
2(∇d+ (∇d)T) (5)

with appropriate displacement boundary conditions. These equations represent a vector-valued
set of equations, so that the solution d is a vector, and represents both a propagation amount
and a propagation direction. (For the Laplacian, the displacement is a scalar—the direction
must be supplied.) However, for successful grid movement, the Lam�e constants within the
elasticity equations must be chosen appropriately. In Tezduyar et al. [7] mesh deformation
based on changes in the shape and volume of each element is accomplished by altering the
ratio of these two coe�cients. Additional investigations of the linear elasticity equations are
described in Stein et al. [8].
If �=1 and �=0, then the linear elasticity equations reduce to a set of decoupled Laplacian

equations with a di�erent equation for each direction. Thus, the Laplacian is a subset of the
linear elasticity equations. This comparison also demonstrates that the Laplacian can be solved
for the deformation in each separate direction, in which case the deformation direction is
implied.
The linear spring analogy was �rst proposed by Batina [9], where the edges of the

unstructured grid are replaced by linear springs whose sti�ness is inversely proportional to
the length of the edges and the nodes are allowed to move in response to the forces applied
to the surface. This grid movement strategy is computationally e�cient, being solved with
a small number of passes through the nodes. However, the original linear spring analogy is
not a robust strategy for extreme mesh movement, because it has no mechanism to prevent
inverted elements, where the area=volume is negative. Due to the ease of implementation and
the computational e�ciency of this approach, several researchers have developed modi�cations
to the linear spring approach to improve the robustness of the algorithm, including Anderson
[10], Singh et al. [11], Zhang and Belegundu [12], and Samareh [13].
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Finally, the torsional spring analogy was developed by Nakahashi and Deiwert [14] and
was used by Farhat et al. [15], where the linear spring system is augmented with torsional
springs in each corner, whose sti�ness is inversely proportional to the sine of the angle.
Using this approach, extreme mesh deformation in 2D unstructured grids was demonstrated,
without generating inverted elements. Degand and Farhat [16] extended the torsional spring
analogy to 3D by decomposing each 3D element in a set of 2D cuts and applied the 2D
torsional spring approach to these cuts. Murayama et al. [17] extended the torsional spring
approach to 3D by simply adding the torsional spring sti�ness coe�cients to the edge sti�ness
coe�cients, and demonstrated extreme distortions on a 3D cube within a cube. Burg [18]
has also extended the 2D torsional spring analogy to 3D by developing a new derivation of
the 2D torsional springs which readily extends to 3D. His algorithm has been used for viscous
water=air interface simulations about surface ships [19, 20].

3. GENERAL GRID MOVEMENT THEOREM

Grid movement algorithms fail due to the generation of elements with negative areas and
volumes. The generation of these bad elements is caused when nodes pass other nodes or
edges. In other words, they are caused when a node moves further than its neighbours, so
that it overcomes the distance between the node and its neighbours.

De�nitions
A valid grid is a mapping  (x) from �1 to �2 = {y|y=  (x)∀x ∈ �1}, such that  (x2)=  (x1)
if and only if x2 =x1. A deformed grid includes the mapping  (x), a deformation amount
P( (x)) and a deformation direction s with ‖s‖=1 and is a mapping from �1 to �P= {y|y=
 (x) + sP( (x))∀x ∈ �1}.
Theorem
A deformed grid is a valid grid if and only if ∇P( (x)) · s �= − 1 for all x ∈ �1, where P is
the deformation amount and s is the deformation direction, with ‖s‖=1.
Proof
Given any point x ∈ �1 and a deformation direction s, restrict y to the space such that
 (y)=  (x)+ts. Assume the deformed grid is valid, so that  (x)+sP( (x))=  (y)+sP( (y))
if and only if x= y. Hence, x �= y if and only if  (x)+sP( (x)) �=  (y)+sP( (y)). Subtracting
 (x) from both sides and dotting into s yields

( (x) + sP( (x))−  (x)) · s �= ( (y) + sP( (y))−  (x)) · s
P( (x)) �= ( (y)−  (x)) · s+ P( (y))

P( (x)) �= ( (x) + ts −  (x)) · s+ P( (x) + ts)

P( (x)) �= t + P( (x) + ts)

P( (x) + ts)− P( (x))
t

�=−1

(6)
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168 C. BURG

Taking the limit as t approaches 0

∇P( (x)) · s �= −1 (7)

Hence, the deformed grid is valid if and only if ∇P( (x)) · s �= − 1.
By using a continuity argument along with no deformation at the outer boundary, the

restriction for valid grid movement can be changed so that

∇P( (x)) · s¿ −1 (8)

One result of this theorem is that interpretation of the deformation is important in deter-
mining whether the grid movement has failed. If the deformation direction is perpendicular
to the gradient of the deformation function, then an in�nite amount of deformation is al-
lowable, with the typical restriction of working with �nite precision machines on discrete
data points.

4. THE 2D LAPLACIAN

The 2D Laplacian in polar coordinates can be written as

1
r

@
@r

(
r
@d
@r

)
+
1
r2

@2d
@�2

= 0 (9)

De�nitions
The following terms are used for the various components of the solution to the Laplacian and
the modi�ed Laplacian:

1. The purely radial solution is denoted g(r), and for the grid movement application pre-
sented herein, it must satisfy the boundary conditions: g(1)=1 and g(R)=0.

2. The frequency solutions are denoted Fn(r; �), where the frequency n is any positive
integer.

3. The radial components of the frequency solutions are denoted Rn(r) and must satisfy the
boundary conditions: Rn(1)=1 and Rn(R)=0.

4. The angular components of the frequency solutions are denoted Tn(�). The frequency
solution for each value of n is the product of the radial component and the angular
component.

5. The radial solution for a particular surface deformation is de�ned as d0(r) and the
frequency solutions for a particular surface deformation are de�ned as dn(r; �).

6. The validity function vn(r; �) is the scalar function associated with the grid movement
restriction, and equals the gradient of the deformation dotted into the deformation direc-
tion. This function must be greater than −1 for all values of r and �.

The general solution of the 2D Laplacian in polar coordinates between two concentric circles
with inner radius of 1 and outer radius of R, with boundary conditions d(1; �)=f(�) and
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d(R; �)=0 is

d(r�) = do(r) +
∞∑
n=1

dn(r; �)

= a0

(
1− log r

log R

)
+

∞∑
n=1
(an cos(n�) + bn sin(n�))

(
R2n − r2n

rn(R2n − 1)
)

(10)

where the coe�cients are determined from the boundary function f(�) and can be given as

a0 =
1
2�

∫ 2�

0
f(�) d�

an =
1
�

∫ 2�

0
f(�) cos(n�) d�

bn =
1
�

∫ 2�

0
f(�) sin(n�) d�

(11)

4.1. Application of 2D Laplacian to grid movement

There are several di�erent types of surface deformation, including translation, expansion and
rotation. If the deformation direction is in the angular direction only, then this is interpreted
as a rotation of the inner circle. If the deformation direction is in the radial direction, then it
can be interpreted as an expansion or contraction of the inner circle. Translation of the inner
circle is caused by a deformation direction that varies in the radial and angular component.
For instance, translation in the x-direction is caused by a deformation direction of the form
(cos �; sin �).
One unique result when applying the Laplacian to polar coordinates is that the radial

deformation on the inner circle must be greater than −1, since the radius of the inner circle
is 1. Otherwise, the radial component will be less than or equal to zero, which is not allowed.
This restriction must be considered when studying the frequency deformations.

4.1.1. Purely radial solution. The use of the Laplacian to propagate a constant deformation
on the surface of the inner circle will be analysed �rst. The purely radial solution is

d0(r)= a0

(
1− log r

log R

)
(12)

where a0 is the amount of deformation.

Theorem 4.1.1
For the radial solution for the 2D Laplacian, if the deformation direction is in the radial
direction, then the maximum allowable deformation is log R, and if the deformation direction
is in the angular direction only, then any amount of deformation is allowed.
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Proof
The proof of this theorem and all remaining theorems are in the Appendix.

4.1.2. Frequency deformation. The behaviour of the frequency deformations is important to
understand when the inner circle is deforming due to forces acting on the circle or for shape-
based design optimization. If the inner circle is only being translated, rotated or expanded in a
uniform direction, then those deformations are in the radial direction only, and the frequency
solutions are not active.
The frequency solution to the Laplacian is

dn(r; �)= (an cos(n�) + bn sin(n�))
(

R2n − r2n

rn(R2n − 1)
)

(13)

Theorem 4.1.2
For the frequency solution of the 2D Laplacian, the maximum allowable deformations for the
purely radial and the purely angular deformations are given below

(a1 cos(n�) + b1 sin(n�))¡
R2n − 1

n(R2n + 1)
if the deformation is purely radial

(a1 sin(n�)− b1 cos(n�))¡
1
n

if the deformation is purely angular

(14)

From this theorem, the maximum allowable deformation is (R2−1)=(R2+1)¡1 for the lowest
frequency and decreases approximately as 1=n as the frequencies increase, for both the radial
and angular deformations. Thus, if there is a frequency component within the grid movement,
then the deformations are greatly limited, especially if there is high frequency content within
the motion.

5. THE 2D MODIFIED LAPLACIAN

The Laplacian is modi�ed to include a term that controls the rate of deformation in the radial
direction, and has the form

1
r

@
@r

(
rq+1

@d
@r

)
+ rq−2

@2d
@�2

= 0 (15)

If q=0, then the traditional Laplacian is recovered. The general solution to the 2D modi�ed
Laplacian with q �=0 in polar coordinates between two concentric circles with inner radius
of 1 and outer radius of R, with boundary conditions d(1; �)=f(�) and d(R; �)=0 is

d(r; �) = d0(r) +
∞∑
n=1

dn(r; �)

= a0
Rq − rq

rq(Rq − 1) +
∞∑
n=1
(an cos(n�) + bn sin(n�))

(
R�1r�1 − r�2

R�1 − 1
)

(16)
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where �1 = − q − �1=2, �2 = − q+ �1=2 and �1 =
√

q2 + 4n2. The following inequalities hold
for �1 and �2:

�1 ¡ 0 for all q and for all integers n ¿ 0

�2 ¿ 1 whenever n2 ¿ q+ 1

0¡ �26 1 whenever n2 6 q+ 1

(17)

5.1. Application of 2D modi�ed Laplacian to grid movement

The introduction of the additional term within the modi�ed Laplacian acts to sti�en the
Laplacian. When the term is less than 1, it sti�ens the equations so that the deformation
extends further into the domain. When the term is greater than 1, it relaxes the equations
so that the deformation is damped out more quickly. In relative terms, since this term varies
throughout the domain, it implies that regions with smaller values are sti�er than those with
larger values. As will be shown, this increased sti�ness near the inner circle is bene�cial.
Furthermore, if the exponent q is su�ciently negative, then the equations become so sti�

that the deformations cause invalid meshes at the outer boundary which is not moving. Hence,
there is an optimal value for the exponent q, based on the type of deformation. For the purely
radial solution, this optimal value allows for perfect deformation of the inner circle. For the
frequency solutions, the optimal value is a function of the frequency and the outer radius R,
so that it is probably not practical to attempt to calculate this optimal value.

5.1.1. Purely radial solution. The purely radial solution for the 2D modi�ed Laplacian is

d0(r)= a0
Rq − rq

rq(Rq − 1) (18)

where a0 is the amount of deformation. If q=0, then this analysis reverts back to the tradi-
tional Laplacian, which involves logarithms.

Theorem 5.1.1
For the 2D modi�ed Laplacian, any amount of deformation is allowed for the radial solution
when the deformation direction is in the angular direction. If the deformation direction is in
the radial direction, then the maximum allowable deformation for the radial solution falls into
one of the following cases:

a0 ¡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
|q|

R|q| − 1
R|q| if q ¡ −1

R − 1 if q= − 1
R|q| − 1

|q| if − 1¡ q ¡ 0

log R if q=0

Rq − 1
qRq if q ¿ 0

(19)
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When q= − 1, the maximum allowable deformation is R− 1, which is the distance from the
inner circle to the outer circle. For this value of q, with deformation in the radial direction
only, the inner circle can be completely increased to the size of the outer circle, without any
grid failure.
As an aside, the maximum allowable deformation as q approaches −1 from either side

is R− 1, so that there is no discontinuity. Similarly, as q approaches 0 from either side, then
maximum allowable deformation approaches log R, which is the solution for q=0.
An unexpected result of the modi�ed Laplacian is that when q¡ − 1, the equation is so

sti� that the grid movement failure occurs �rst at the outer circle.

5.2. Frequency solutions

Theorem 5.2.1
For the 2D modi�ed Laplacian with q¿− 1, when the deformation direction is purely radial,
the maximum allowable deformation for the frequency solutions occurs at r=1. Under these
circumstances, then the maximum allowable deformation is the following:

(an cos(n�) + bn sin(n�))¡
2(R�1 − 1)

�1(R�1 + 1) + q(R�1 − 1) (20)

The maximum allowable deformation is a function of three parameters R, q and n. Once the
domain is chosen, the outer radius R is �xed. For �xed q, the maximum allowable deformation
trends as 1=n for large values of n, which will occur for general grid movement applications
when the surface is deformed rather than translated, rotated or expanded. For �xed n, an
optimal value of q can be determined, which allows for the greatest deformation. However,
this optimal value of q increases with n, so that an optimal value for one frequency will not
be optimal for other values of n. If the deformation is dominated by a particular frequency,
then using the optimal value based on that frequency may be bene�cial. But if more than one
frequency has strong in�uence, then the optimal value of q for that deformation may not be
signi�cantly better than a standard value, such as that used by Crumpton and Giles, which
was q= − 2 in 2D and q= − 3 in 3D.
Theorem 5.2.2
For the 2D modi�ed Laplacian with q¡− 1, when the deformation direction is purely radial,
the maximum allowable deformation for the frequency solutions occurs at r=1, if the outer
radius R satis�es R�1�1 +�1R�2−1¡�2, where �2 = −q+�1=2 and �1 =

√
q2 + 4n2. Under these

circumstances, then the maximum allowable deformation is as follows:

(an cos(n�) + bn sin(n�))¡
2(R�1 − 1)

�1(R�1 + 1) + q(R�1 − 1) (21)

The restriction in this theorem determining the relationship between R, q and n does not
in�uence the maximum allowable deformation for practical applications, in general. First,
the maximum allowable deformation for the frequency solutions has an imposed restriction
of the inner radius, since the simulation is in polar coordinates. If the maximum allowable
deformation were greater than 1, then the inner circle would pass through the original, creating
an invalid mesh, due to the singularity and not due to the general grid movement theorem.
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Table I. Value of q for which the outer boundary acts
as the restriction.

n q

1 −2.52
2 −6.28
3 −11.18

To demonstrate the in�uence of this restriction, the value of q for which the outer boundary
begins to act as the restriction is determined, using R=5 and for the �rst three frequencies.
Table I shows the results. These values were derived from the above restriction and have
been veri�ed numerically. As the frequency increases, the value of q increases more rapidly.
As is shown in Figure 12, the polar coordinates restriction is active for the initial range of q
for each frequency, forcing the in�uence of the restriction at the outer boundary to begin to
dominate at much larger values of q. Since the optimal value for translations is q= − 1, it is
unlikely that signi�cantly larger values of q would be used for practical applications.
The next theorem applies when the deformation direction is the angular direction.

Theorem 5.2.3
For the 2D modi�ed Laplacian, when the deformation direction is purely angular, the maxi-
mum allowable deformation for the frequency solutions occurs at r=1. Under these circum-
stances, then the maximum allowable deformation is as follows:

(an cos(n�)− bn sin(n�))¡
1
n

(22)

6. THREE-DIMENSIONAL MODIFIED LAPLACIAN

Following the same type of derivation, the Laplacian in spherical coordinates using modi�ed
to include a term that varies with the distance from the origin can be written as

∇ · (rq∇d)=
1
r2

@
@r

(
rq+2

@d
@r

)
+

rq−2

sin �
@
@�

(
sin �

@d
@�

)
+

rq−2

sin2 �
@2d
@�2

= 0 (23)

If q=0, then the traditional Laplacian is recovered. The solution to the modi�ed Laplacian in
spherical coordinates between two concentric spheres with radii rinner = 1 and router =R, with
boundary conditions d(1; �; �)=f(�; �) and d(R; �; �)=0 is

d(r; �; �)= a0g(r) +
∞∑
n=1

m=n∑
m=−n

amn

(
R�2r�3 − r�4

R�2 − 1
)
Tm
n (cos �)e

im� (24)

where the purely radial solution is

g(r)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rq+1 − rq+1

rq+1(Rq+1 − 1) if q �= −1

log(R)− log(r)
log(R)

if q= − 1
(25)
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and �2 =
√
4n2 + q2 + 4n+ 2q+ 1, �3 = − q− 1− �2=2, �4 = − q− 1+ �2=2 and Tm

n (’) is the
associated Legendre polynomial. The following inequality hold for �3 and �4:

�3 ¡ 0 for all q and for all integers n ¿ 0

�4 ¿ 1 whenever n2 + n ¿ q+ 2

0¡ �46 1 whenever n2 + n6 q+ 2

(26)

6.1. Application of 3D modi�ed Laplacian to grid movement

6.1.1. Purely radial solution

Theorem 6.1.1
For the 3D modi�ed Laplacian, any deformation is allowed for the radial solution if the
deformation direction is in the angular direction. If the deformation is in the radial direction,
then the maximum allowable deformation for the radial solution is

a0 ¡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rq+1 − 1
(q+ 1)Rq+1 if q ¿ −1

log(R) if q= − 1
R|q|−1 − 1
(|q| − 1) if − 2¡ q ¡ −1

R − 1 if q= − 2
R|q|−1 − 1

(|q| − 1)R|q|−2 if q ¡ −2

(27)

As for the 2D modi�ed Laplacian, there is an optimal value for q, which allows for a complete
enlargement of the inner sphere to the outer sphere. For the 3D modi�ed Laplacian, the optimal
value of q for purely radial motion is −2. Also, the maximum allowable deformation as q
approach −1 from either side is log R.

6.1.2. Frequency components. The maximum allowable deformations for the frequency com-
ponents of the 3D modi�ed Laplacian follow the same trends for the 2D modi�ed Laplacian.
The proofs are in the appendix.

Theorem 6.1.2a
For the 3D modi�ed Laplacian with q¿− 2, when the deformation direction is purely radial,
the maximum allowable deformation for the frequency solutions occurs at r=1. Under these
circumstances, then the maximum allowable deformation is as follows:

|amn||Tm
n (cos �)| ¡

2(R�2 − 1)
�2(R�2 + 1) + (q+ 1)(R�2 − 1) (28)

where �2 =
√
4n2 + q2 + 4n+ 2q+ 1.
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Theorem 6.1.2b
For the 3D modi�ed Laplacian with q¡− 2, when the deformation direction is purely radial,
the maximum allowable deformation for the frequency solutions occurs at r=1, if the outer
radius R satis�es R�2�3+�2R�4−1¡�4, where �3 = −q−1−�2=2 and �4 = −q−1+�2=2. Under
these circumstances, then the maximum allowable deformation is as follows:

|amn||Tm
n (cos �)| ¡

2(R�2 − 1)
�2(R�2 + 1) + (q+ 1)(R�2 − 1) (29)

These results show that the maximum allowable deformation for the frequency components
for the 3D modi�ed Laplacian behaves similar to the maximum allowable deformation for
the frequency components 2D modi�ed Laplacian, varying inversely with the frequency n.
For large R, this restriction trends as 2=(�2 + q+ 1), so for �xed q, the maximum allowable
deformation trends as 1=n, which is the same result for the 2D modi�ed Laplacian. (The
behaviour of the maximum value of the associated Legendre polynomials is di�cult to analyse
and to bound. The calculation of the coe�cients amn involves the reciprocal of Tm

n (cos �), so
that amnTm

n (cos �) is the appropriate quantity to bound.)

7. COMPUTATIONAL VALIDATIONS

The analytically determined maximum allowable deformations were tested on an unstructured
triangulated grid where the outer radius was 5 for a variety of values of q between −10 and 0
and for frequencies up to n=20. The deformed grids had no negative triangles, when the
magnitude of the deformations were smaller than the maximum allowable deformation.

7.1. Single frequency deformations

Shown in Figures 2–6 are the grids for the maximum allowable deformations for q=0 and at
optimal values of q for purely radial expansion, for the �rst three frequencies and for n=9.

Figure 2. Radial deformation for q=0 and −1.
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Figure 3. Frequency n=1 deformation for q=0 and −2.

Figure 4. Frequency n=2 deformation for q=0 and −5.

When q= − 1, the maximum allowable deformation is R − 1, so that the inner circle can be
completely expanded to the outer circle. In order to visualize this case, the deformation was
only 95% of the maximum allowable deformation. For the frequency solution deformations,
optimal values of q were used for the modi�ed Laplacian, so that the maximum allowable
deformation was 1 for these cases. For the case n=9, the optimal value of q was more
negative than −40, but round-o� error in the calculations prevented a full deformation of 1
for n=9. The use of the modi�ed Laplacian for the frequency solutions signi�cantly in-
creases the maximum allowable deformation over the Laplacian. However, for grid movement
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Figure 5. Frequency n=3 deformation for q=0 and −9.

Figure 6. Frequency n=9 deformation for q=0 and −40.

problems with a wide range of frequencies, choosing the optimal value may be quite di�cult
and may not allow for deformation that are signi�cantly better than the Laplacian.
The di�erence in the two deformations in Figure 3 is slight, because the maximum allowable

deformation for the Laplacian is almost the same as for the modi�ed Laplacian, due to the
polar coordinates restriction that the maximum allowable deformation be less than or equal
to the inner radius.
Figure 7 shows the compression of the grid for the radial solution at 95% of the maximum

allowable deformation. This grid is highly compressed, but it is still a valid grid. In Figures 8
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Figure 7. Close-up of radial deformation for q= − 1.

Figure 8. Close-up of frequency n=3 deformation for q= − 9.

and 9, closeup grids for two frequency solutions are shown. Because of appropriate choices
of q, extreme distortions are allowed. The grid in Figure 9 for frequency n=9 actually is
an invalid mesh, even though theoretically it should be valid. Due to the coarseness of the
mesh, the triangles near the greatest expansions are inverted because they are larger than the
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Figure 9. Close-up of frequency n=10 deformation for q= − 40.

�ne scale details in the deformation. If a more re�ned grid were used, the modi�ed Laplacian
would produce a valid deformed grid.

7.2. Rotations and translations

In the previous section, only expansions and radial deformations of the inner circle are shown.
To demonstrate that extreme rotations and translations can be achieved using the modi�ed
Laplacian, two more examples are presented. In the �rst, a translation in the x-direction of a
distance of 3 is shown in Figure 10, using q= − 1. As with the purely radial deformation
case with q= − 1, the translation can be quite severe, even translating the inner circle up
against the outer circle without generating an invalid mesh.
For the rotation, the same value of q is used for a rotation of 180◦. The resulting grid and

closeup are shown in Figure 11. The rotation is limited by the discrete nature of the grid, so
that if the grid were highly re�ned, much more rotation would be allowed.

7.3. Optimal choice of q for single frequency deformations

In Figure 12, the maximum allowable deformations for the case when R=5 are shown as
a function of q for the radial solution and the �rst four frequency solutions. For the radial
solution, the optimal value of q is at −1, but for the frequency solutions, the maximum allow-
able deformation increases as q becomes more negative, until it reaches the maximum value
of 1, which is the radius of the inner circle. As q decreases further, the maximum allowable
deformation becomes restricted by the condition at the outer boundary and decreases.
Crumpton and Giles used a modi�ed Laplacian ∇ · (k∇d)=0, where k was inversely

proportional to the size of the elements. For a perfect triangular grid, as shown in Figure 13,
with N points on the inner and on the outer circles, with inner radius of 1 and outer radius
of R, then the area of a triangle attached to the inner circle would be approximately 2�2=N 2
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Figure 10. Images of translation of inner circle by 3.

Figure 11. Images of rotation of inner circle by 180◦.

while the area of a triangle at the outer circle would be approximately 2�2R2=N 2. Hence, the
area of the elements grows at a rate of r2, and k would be r−2. Similarly, in 3D, the value
of k would vary at a rate of r−3. Thus, Crumpton and Giles method was equivalent to a value
of q= − 2 for 2D and a value of q= − 3 for 3D, both of which are reasonable compromises
for practical applications with a wide range of frequency components in the deformation.

7.4. Practical applications

For realistic grid deformation applications, either the object will be translated or rotated with-
out any deformation of the object or the object will be deformed. For the case of objects
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Figure 12. Variation of maximum allowable deformation with q and n.

Figure 13. Example of concentric circles with perfect grid.

moving relative to one another, the grid motion has no frequency content, so the optimal
value of q is −1 for 2D and −2 for 3D simulations, and the modi�ed Laplacian should
yield excellent results for this application. However, if the shape of the surface is deformed
due to forces acting upon it, such as for aero-elastic wing deformation or free surface sim-
ulations, then the grid motion will have multiple frequency components. Hence, choosing an
optimal value of q will not be practical, since the optimal value for each frequency component
grows linearly with the frequency. As reported in the literature, the commonly chosen values
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of q=−2 for 2D and q=−3 for 3D are a good choice, since the lowest frequencies will
probably dominate most grid motions.
In general, practical applications will not involve circles and spheres, but rather complicated

airfoils and B-Spline and NURBS curves and surfaces. Hence, the value of r used in the
modi�ed Laplacian must be interpreted for application to these types of geometries. In the
literature, the two common practices for setting the value of sti�ness, which is represented
by the term rq in our modi�ed Laplacian, is to allow the sti�ness to vary inversely with
the distance from the surfaces in motion and to set the sti�ness based on the local element
size. Assuming that the element size is smallest near the surfaces in motion and grows as the
distance from the surfaces increases, then the value of r should be interpreted as the distance
to the nearest surface in motion, plus some representative size of the moving surface, such
as the object’s average radius. This interpretation is consistent with the analytical results
presented herein, as well as in the literature.

8. COMPARISON WITH LINEAR SPRINGS

The linear springs method is quite similar to the modi�ed Laplacian. For the simplest linear
spring methodology, the deformations are propagated throughout the domain by assuming that
each edge consists of a spring whose sti�ness is inversely related to the length of the edge.
This spring network is acted upon by an external force, which is the deformation at one or
more boundaries. By seeking an equilibrium or a balance of the forces, the deformations can
be found by solving repeatedly via

�xm+1i =

∑
j kij�xmj∑

j kij

�ym+1
i =

∑
j kij�ym

j∑
j kij

(30)

where i is the node to be solved, j is a list of nodes attached to node i, kij is the sti�ness
of the edge between nodes i and j, and �xmj is the deformation at node j at iteration m.
Typically, kij varies inversely with the length of the edge ij. This spring network is not
coupled and hence does not allow for changes in x to a�ect y and vice versa. The version
of the spring analogy that allows coupling between the x and y directions cannot be directly
related to the modi�ed Laplacian.
The modi�ed Laplacian can be solved numerically in the following manner:

0=
∫
�

∇ · (rq∇d)=
∫

@�
(rq∇d) · n̂ dS ≈ ∑

j
rqij

dj − di

sij
Aij (31)

where rij is the radial value at the middle of edge ij, sij is the distance between nodes i and j
and Aij is the length of the face of the dual associated with edge ij. Solving for di

di=

∑
j rqij

djAij

sij∑
j rqij

Aij

sij

(32)
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which is similar in structure to the equation for the linear spring analogy. If the grid is a
perfect grid, as shown in Figure 13, then the length of each edge ij should be approxi-
mately 2�rij=N . Similarly, the value of Aij should scale with rij, so that the equation for di

becomes

di ≈
∑

j rqijdj∑
j rqij

(33)

Typically kij varies inversely with the length of edge ij raised to some exponent q. For a
perfect grid, the length of the edge varies with the radius rij, so kij= rqij. This derivation
shows that the Laplacian and the linear springs analogy yield the same results for a perfect
grid between two concentric circles. By analogy, it is assumed that the restrictions on the
Laplacian are similar to the restrictions on the linear spring analogy for various exponents q.
Blom [21] has come to similar conclusion when he compared the linear spring analogy to
elliptic grid generation algorithms, and alters his spring sti�ness coe�cient near the moving
surface by increasing the sti�ness by a factor of 5, which is similar to a modi�ed Laplacian
approach.

9. ANALYSIS OF VARIANT OF LAPLACIAN

Masud and Hughes [3] present a variant to the two-dimensional Laplacian, where the Laplacian
is modi�ed by including a term that scales as 1+(1=r) rather than as 1=r, so that the governing
equation for the grid movement is

∇ · (1 + �m)∇d=0 (34)

where

�em=
1−�min=�max

�e=�max
(35)

where �min is the area of the smallest element, �max is the area of the largest element in the
grid, �e is the area of the particular element. Assuming a grid about two concentric circles
as described above, with inner radius of 1 and outer radius of R, and assuming that the area
of each element scales with the square of radial distance, so that �=Ar2, then this grid
movement equation reduces to

∇ ·
[(

r2 + R2 − 1
r2

)
∇d

]
=0 (36)

Transforming to polar coordinates, this equation becomes

1
r

@
@r

(
r2 + R2 − 1

r
@d
@r

)
+

r2 + R2 − 1
r2

@2d
@r2

= 0 (37)
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The radial solution, assuming the same boundary conditions, is

do(r)= a0
ln(r2 + R2 − 1)− ln(2R2 − 1)

ln(R2)− ln(2R2 − 1) (38)

The validity function is

v(r)=
−a0

(ln(2R2 − 1)− ln(R2))
2r

r2 + R2 − 1 ¿ −1 (39)

This is most restrictive at r=R, so the largest displacement for the radial solution is

a0 ¡
2R2 − 1
2R

ln
(
2R2 − 1

R2

)
(40)

This grid movement formulation di�ers from the modi�ed Laplacian in that the validity func-
tion is limited by the behaviour at the outer radius rather than at the inner radius. How
does it compare with the Laplacian and with the optimal choice for the modi�ed Laplacian
(i.e. q= − 1) for the radial deformation case? For the Laplacian, the restriction is that
a0¡ log(R), while the restriction for the optimal modi�ed Laplacian is a0¡R − 1.
Crumpton and Giles methodology is approximately equivalent to a modi�ed Laplacian with
q= − 2, which has a restriction of a0 =R2 − 1=2R. The maximum allowable deformation
for these di�erent approaches to the Laplacian is shown in Figure 14. The optimal choice
(q= − 1) allows the maximum deformation, while the original Laplacian (q=0) is the most
restrictive. Masud and Hughes’s variant of the Laplacian yields better results than that of
Crumpton and Giles, but it is not as good as the optimal choice. However, since the work
performed by Masud and Hughes and by Crumpton and Giles included deformations in the
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Figure 14. Maximum allowable deformation for the Laplacian (q=0), the optimal
Laplacian (q= − 1), Crumpton and Giles choice (q= − 2) and Masud and Hughes

variation, for the radial deformation.
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frequency components as well as in the radial components, their methods are both reasonable
compromises over the space of frequencies in their problems.

10. CONCLUSIONS

Analytic solutions for the modi�ed Laplacian in 2D and 3D for the case of concentric circles
and spheres where the inner circle or sphere is deformed while the outer circle or sphere is
undeformed has been derived. Using a general grid movement theorem that states when a
grid will become invalid due to a grid deformation, the maximum allowable deformation on
the inner circle or sphere has been determined using these analytic solutions.
For the case of radial deformation only, where the deformation is constant on the surface of

the circle or sphere, then any amount of deformation is allowed if the deformation direction
is in an angular direction. When the exponent q is −1 for 2D and −2 for 3D, then the inner
circle or sphere can be expanded until it reaches the outer circle or sphere without creating an
invalid grid. Hence, for rotations, translations and expansions of the inner circle, the modi�ed
Laplacian yields excellent results.
However, if the deformation on the circle or sphere is not constant, then the frequency

variations must be considered. As the frequency of the deformation increases for �xed q
and R, then the maximum allowable deformation decreases at approximately a rate of 1=n,
where n is the frequency. For single frequencies, an optimal value of q can be found which
allows for severe deformation. For general grid movement simulations, where the frequency
content is quite high, a compromise in the choice of q among the various optimal values
is needed, which will greatly reduce the amount of deformation. Crumpton and Giles used
the modi�ed Laplacian with a sti�ness coe�cient that varied inversely with the size of the
element. Their choice amounted to a value of q= −2 for 2D grids and q= −3 for 3D grids,
which was a good compromise for their applications. A variant of the Laplacian used by
Masud and Hughes was compared with the modi�ed Laplacian. This variant did not perform
as well as the optimal choice of the modi�ed Laplacian since the optimal choice allowed for
a complete deformation of the inner circle to the outer circle, but it performed better than the
method used by Crumpton and Giles for the purely radial motion.
The conclusion to be drawn from this analytic investigation into a simpli�ed grid deforma-

tion problem is that for rotations, translations and expansions of an isolated object far from
the outer boundary, the modi�ed Laplacian with appropriate choice of q should yield excellent
results. But if the grid deformations have higher order frequency components, then the use of
the modi�ed Laplacian will restrict the amplitude of the deformations.
Finally, the modi�ed Laplacian and the linear spring analogy are shown to be equivalent for

a special case of two concentric circles. Hence, for general deformations, it can be assumed
that the restrictions for the modi�ed Laplacian apply to the linear spring analogy.

APPENDIX A

Theorem 4.1.1
For the radial solution for the 2D Laplacian, if the deformation direction is in the radial
direction, then the maximum allowable deformation is log R, and if the deformation direction
is in the angular direction only, then any amount of deformation is allowed.
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Proof
The gradient of the radial solution is

∇d0(r)=
(

− a0
r log R

; 0
)

(A1)

Clearly, if the deformation direction is only in the angular direction, then s=(0; 1) and
∇d0(r) · s=0. This product is always greater than −1, so any amount of deformation is
allowed.
If the deformation direction is only in the radial direction, then s=(1; 0), and the validity

function v0(r) is

v0(r)= − a0
r log R

¿ −1 (A2)

This function must be greater than −1, so a0¡r log R for all r ∈ [1; R]. This relation is most
restrictive when r=1, so the maximum allowable deformation is a0¡ log R.

Theorem 4.1.2
For the frequency solutions of the 2D Laplacian, the maximum allowable deformations for
the purely radial and the purely angular deformations are given below

(a1 cos(n�) + b1 sin(n�))¡
R2n − 1

n(R2n + 1)
if the deformation is purely radial

a1 sin(n�)− b1 cos(n�))¡
1
n

if the deformation is purely angular

(A3)

Proof
The gradient of frequency solution is

∇dn(r; �) = ((an cos(n�) + bn sin(n�))
(

−n
R2n + r2n

rn+1(R2n − 1)
)
;

n(−an sin(n�) + bn cos(n�))
(

R2n − r2n

rn+1(R2n − 1)
))

(A4)

If the deformation is a radial deformation (i.e. s=(1; 0)), then the validity function is

vn(r; �)= (an cos(n�) + bn sin(n�))
(

−n
R2n + r2n

rn+1(R2n − 1)
)

¿ −1 (A5)

and the restriction for successful grid movement is

(an cos(n�) + bn sin(n�))¡
rn+1(R2n − 1)
n(R2n + r2n)

(A6)
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The right-hand side function is positive for all r¿0, is equal to zero at r=0 and has one
extremum, at r= 2n

√
(n+ 1=n − 1)R¿R, which lies outside of the domain of interest. In the

domain of interest, the right-hand side is an increasing function of r, so it is most restrictive
at r=1. Thus, the restriction is

(an cos(n�) + bn sin(n�))¡
(R2n − 1)
n(R2n + 1)

(A7)

If the deformation is purely angular (i.e. s=(0; 1)), then the validity function is

vn(r; �)= n(−an sin(n�) + bn cos(n�))
(

R2n − r2n

rn+1(R2n − 1)
)

(A8)

and the restriction is

(an sin(n�)− bn cos(n�)¡
rn+1(R2n − 1)
n(R2n − r2n)

(A9)

The right-hand side is 0 at r=0 and is monotonically increasing until r=R where it grows
without bound. Hence, this is most restrictive on the interval [1; R] when r=1, or

(an sin(n�)− bn cos(n�))¡
1
n

(A10)

Theorem 5.1.1
For the 2D modi�ed Laplacian, any amount of deformation is allowed for the radial solution
when the deformation direction is in the angular direction. If the deformation direction is in
the radial direction, then the maximum allowable deformation for the radial solution falls into
one of the following cases:

a0 ¡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
|q|

R|q| − 1
R|q| if q ¡ −1

R − 1 if q= − 1
R|q| − 1

|q| if − 1¡ q ¡ 0

log R if q=0

Rq − 1
qRq if q ¿ 0

(A11)

Proof
The case when q=0 was proved in a previous section, so it will be assumed that q �=0 for
the following derivations.
The gradient of the deformation is

∇d0(r)=
(

− a0qRq

rq+1(Rq − 1) ; 0
)

(A12)
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If the deformation direction is in the angular direction (i.e. s=(0; 1)), then the validity
function is

v0(r)=0¿ −1 (A13)

So, it will always satisfy the grid movement restriction.
If the deformation direction is in the radial direction (i.e. s=(1; 0)), then the validity

function is

v0(r)= − a0qRq

rq+1(Rq − 1) ¿ −1 (A14)

The validity function is negative for all r¿0 and for all q. If q is positive, then each term
in the validity function is positive, with the product multiplied by a negative sign. If q is
negative, then Rq−1¡0, and the product again is negative. Hence, the restriction for successful
grid movement is

a0 ¡
rq+1(Rq − 1)

qRq (A15)

If q= − 1, then the restriction reduces to

a0 ¡
R−1 − 1
−R−1 =R − 1 (A16)

When q¿ − 1, then the restriction is an increasing function of r, and when q¡ − 1, it is a
decreasing function of r.
Hence, when q¿ − 1, the restriction is most restrictive when r=1, or

a0 ¡
Rq − 1
qRq (A17)

If −1¡q¡0, then this restriction can be written as

a0 ¡
R−|q| − 1
−|q|R−|q| =

R|q| − 1
|q| (A18)

When q¡− 1, the restriction is most restrictive when r=R, since it is a decreasing function
of r, or

a0 ¡
R
|q|

R|q| − 1
R|q| (A19)

Theorem 5.2.1
For the 2D modi�ed Laplacian with q¿− 1, when the deformation direction is purely radial,
the maximum allowable deformation for the frequency solutions occurs at r=1. Under these
circumstances, then the maximum allowable deformation is as follows:

(an cos(n�) + bn sin(n�))¡
2(R�1 − 1)

�1(R�1 + 1) + q(R�1 − 1) (A20)

where �1 =
√

q2 + 4n2.
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Proof
The gradient of the frequency solution is

∇dn(r; �) =
(
(an cos(n�) + bn sin(n�))

(
R�1�1r�1−1 − �2r�2−1

R�1 − 1
)
;

n(−an sin(n�) + bn cos(n�))
(
R�1r�1−1 − r�2−1

R�1 − 1
))

(A21)

where �1 = − q − �1=2, �2 = − q + �1=2 and �1 =
√

q2 + 4n2. If the deformation direction is
purely radial, then the validity function is

vn(r; �)= (an cos(n�) + bn sin(n�))
(
R�1�1r�1−1 − �2r�2−1

R�1 − 1
)

¿ −1 (A22)

The radial part is

Radn(r)=
R�1�1r�1−1 − �2r�2−1

R�1 − 1 (A23)

Since �1¡0 and �2¿0 for all q and n, the radial part is negative for all positive values of r.
As stated above, �1¡0, so �1 − 1¡0 for all q and n, so the behaviour of this �rst term in
the numerator is the same for all values of q and n. However, since �2 can be greater or
less than 1 based on the values of q and n, there are three cases: n2¿q+ 1, n2 = q+ 1 and
n2¡q+ 1.
Case 1: n2¿q+ 1. In this case, �2 − 1¿0, so the radial part is negative for all values of

r¿0 and approaches negative in�nity as r approaches 0 and as r approach in�nity. Thus,
function has at least one extrema in the interval (0;∞). The extrema of the radial part are
found by setting the derivative to zero and solving for r, which yields

r=R
(
�1(�1 − 1)
�2(�2 − 1)

)1=�1
(A24)

which shows that there is only one extrema in the interval (0;∞), which is a maximum.
Thus, the minimum of the radial part on the interval [1; R] must occur at the endpoints. At
the endpoints, the radial part is

@Radn
@r

(1) =
R�1�1 − �2
R�1 − 1

@Radn
@r

(R) =
R�1�1R�1−1 − �2R�2−1

R�1 − 1 =
(�1 − �2)R�2−1

R�1 − 1

=−�1R�2−1

R�1 − 1 (A25)
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To demonstrate when the value at r=1 is more negative than the value at r=R, consider
the following function of R, which is a measure of the di�erence of Radn at the inner and
outer radii:

F(R)=R�1�1 − �2 + �1R�2−1 (A26)

If F¡0, then the value at r=1 is greater than the value at r=R. Clearly, F(1)=0, and
limR→∞ F(R)= − ∞. If F has no critical points between 1 and ∞, then the functional is a
negative, monotonically decreasing function for R¿1. To identify the critical points, set the
derivative of F(R)=0, or

F′(R)= �1R�1−1�1 + (�2 − 1)�1R�2−2 = 0 (A27)

Rearranging

R�1+1−�2 =
1− �2
�1

(A28)

The critical points of F(R) will be greater than 1, only if

1− �2
�1

¿ 1 (A29)

which will occur whenever q¡ − 1. Hence, when q¿ − 1, the critical point of F(R) is less
than one, so that F(R)¡0 for all values of R¿1, and the radial part is more negative at r=1
than at r=R. Thus, the maximum allowable deformation occurs at r=1 and must satisfy

(an cos(n�) + bn sin(n�))¡
2(R�1 − 1)

�1(R�1 + 1) + q(R�1 − 1) (A30)

Case 2: n2 = q+ 1. In this case, �2 − 1=0, so the radial part Radn(r) simpli�es to

Radn(r)= − Rq+2(q+ 1)r−q−2 + 1
Rq+2 − 1 (A31)

This function approaches −∞ as r approaches 0 and approaches −(1=Rq+2 − 1) as r
approaches ∞. It is a negative function for all positive values of r and is monotonically
increasing with r. Hence, on the interval [1; R], it is most restrictive at r=1, and the same
maximum allowable deformation applies.
Case 3: n2¡q+1. Following the derivation given above, since n2¡q+1, then �2 − 1¡0.

Under these circumstances, the radial part approaches negative in�nity as r approaches 0
and approaches 0 as r approaches in�nity. The critical points for the radial part satisfy the
following equation:

r=R
(
�1(�1 − 1)
�2(�2 − 1)

)1=�1
(A32)

The fraction under the radical is negative, because �1¡0 and 0¡�2¡1. Hence, there is no
critical point for r¿0, the radial part is a negative monotonically increasing function of r, the
most negative value occurs when r=1, and the same restriction for the maximum allowable
deformation holds.
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Theorem 5.2.2
For the 2D modi�ed Laplacian with q¡− 1, when the deformation direction is purely radial,
the maximum allowable deformation for the frequency solutions occurs at r=1, if the outer
radius R satis�es R�1�1 +�1R�2−1¡�2, where �2 = −q+�1=2 and �1 =

√
q2 + 4n2. Under these

circumstances, then the maximum allowable deformation is as follows:

(an cos(n�) + bn sin(n�))¡
2(R�1 − 1)

�1(R�1 + 1) + q(R�1 − 1) (A33)

Proof
Following the derivation given above, if q¡−1, then the functional F(R) is positive for all R
between 1 and Rmax. It is then negative for all values R¿Rmax. If R satis�es the conditions
of the theorem, then F(R)¡0, and the radial part is more negative at r=R than at r=1.
Thus, under the conditions of the theorem, the maximum allowable deformation occurs at

r=1 and satis�es

(an cos(n�) + bn sin(n�))¡
2(R�1 − 1)

�1(R�1 + 1) + q(R�1 − 1) (A34)

Theorem 5.2.3
For the 2D modi�ed Laplacian, when the deformation direction is purely angular, the maxi-
mum allowable deformation for the frequency solutions occurs at r=1. Under these circum-
stances, then the maximum allowable deformation is as follows:

(an cos(n�)− bn sin(n�))¡
1
n

(A35)

Proof
When the deformation direction is purely angular, the validity function is

vn(r; �)= n(−an sin(n�) + bn cos(n�))
(
R�1r�1−1 − r�2−1

R�1 − 1
)

(A36)

where the radial part of the validity function is

Radn(r)=
R�1r�1−1 − r�2−1

R�1 − 1 (A37)

As stated in the lemma, �1−160 when n26q+1 and �1−1¿0 when n2¿q+1. Two di�erent
behaviours occur based on the sign of �2 − 1. These will be studied in two di�erent cases.
Case 1: When n2¿q+1, �2−1¿0, so the radial part ranges from positive in�nity at r=0

to negative in�nity as r approaches in�nity. Since this function has no critical points, it is
monotonically decreasing. Its values at the endpoints are

Radn(1) = 1

Radn(R) = 0
(A38)
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So, it is largest at r=1. Hence, the validity function is most negative at r=1, where it must
satisfy the following relation for success grid movement:

vn(r; �)= n(−an sin(n�) + bn cos(n�))¿ −1 (A39)

The maximum allowable deformation is

(an sin(n�)− bn cos(n�))¡
1
n

(A40)

Case 2: When n26q+1, �2−160, so the radial part approaches 0 as r approaches in�nity.
To consider the behaviour as r approaches 0, rewrite the radial part as

Radn(r)=
(R�1 − r�1)r�1−1

R�1 − 1 (A41)

From this expression, Radn(0)= + ∞. As stated above for case 1, Radn(1)=1
and Radn(R)=0. Hence, there is at least one critical point in the radial part, which is a
minimum at

r=R
(
�1 − 1
�2 − 1

)1=�1
(A42)

But since there is only one critical point, it must be a minimum due to the shape of the
function. Thus, the radial part is monotonically decreasing in the interval [1; R], so the validity
function is most negative at r=1, and the maximum allowable deformation is

(an sin(n�)− bn cos(n�))¡
1
n

(A43)

Theorem 6.1.1
For the 3D modi�ed Laplacian, any deformation is allowed for the radial solution if the
deformation direction is in the angular direction. If the deformation is in the radial direction,
then the maximum allowable deformation for the radial solution is

a0 ¡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rq+1 − 1
(q+ 1)Rq+1 if q ¿ −1

log(R) if q= − 1
R|q|−1 − 1
(|q| − 1) if − 2¡ q ¡ −1

R − 1 if q= − 2
R|q|−1 − 1

(|q| − 1)R|q|−2 if q ¡ −2

(A44)
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Proof
The gradient of the radial component is

∇d0(r)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
a0

(q+ 1)Rq+1

rq+2(1− Rq+1)
; 0

)
if q �= −1

( −a0
r log(R)

; 0
)

if q= − 1
(A45)

If the deformation direction is in the angular direction, then the validity function is always 0,
so that any amount of angular deformation is allowed.
If the deformation direction is the radial direction, then the validity function is

v0(r)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0(q+ 1)Rq+1

rq+2(1− Rq+1)
if q �= −1

−a0
r log(R)

if q= − 1
(A46)

If q= −1, then the validity function is a negative function that is monotonically increasing. In
the interval of interest, its minimum value is at r=1, and the maximum allowable deformation
is a0¡ log(R).
If q¿ − 1, then the validity function is again a negative function that is monotonically

increasing, and its minimum value over the interval is at r=1. Hence, the maximum allowable
deformation is

a0 ¡
Rq+1 − 1
(q+ 1)Rq+1 (A47)

which decreases with q at approximately a rate of 1=q.
If −2¡q¡ − 1, then the validity function can be rewritten as

vn(r)=
(−|q|+ 1)R

r−|q|+2(R|q| − R)
(A48)

which is negative and monotonically increasing, so that its minimum value and maximum
allowable deformation are the same as for the case when q¿−1, and the maximum allowable
deformation is

a0 =
R|q|−1 − 1
(1− |q|) (A49)

When q¡ − 2, the validity function can be written as

vn(r)=
(−|q|+ 1)r|q|−2R

(R|q| − R)
(A50)

so it is a negative function that is decreasing. Hence, its minimum value is at r=R and its
maximum allowable deformation then is

a0 ¡
(R|q|−1 − 1)
(|q| − 1)R|q|−2 (A51)
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For the case when q= −2, both restrictions for the maximum allowable deformation are equal
and reduce to

a0 =R − 1 (A52)

which is the distance from the inner circle to the outer circle.

Theorem 6.1.1a
For the 3D modi�ed Laplacian with q¿− 2, when the deformation direction is purely radial,
the maximum allowable deformation for the frequency solutions occurs at r=1. Under these
circumstances, then the maximum allowable deformation is as follows:

|amn||Tn
m(cos �)| ¡

2(R�2 − 1)
�2(R�2 + 1) + (q+ 1)(R�2 − 1) (A53)

where �2 =
√
4n2 + q2 + 4n+ 2q+ 1, �3 = − q − 1− �2=2 and �4 = − q − 1 + �2=2.

Proof
The gradient of the frequency solution dmn(r; �; �) dotted into the radial direction is

amn

(
R�2�3r�3−1 − �4r�4−1

R�2 − 1
)
Tm
n (cos �)e

im� (A54)

where �3 = − q − 1− �2=2 and �4 = − q − 1 + �2=2. The radial part is given by

Radn(r)=
R�2�3r�3−1 − �4r�4−1

R�2 − 1 (A55)

Since �3¡0 and �4¿0 for all q and n, the radial part is negative for all positive values of r.
As stated above, �3¡0, so �3 − 1¡0 for all q and n, so the behaviour of this �rst term in
the numerator is the same for all values of q and n. However, since �4 can be greater or less
than 1 based on the values of q and n, there are three cases: n2 + n¿q + 2, n2 + n= q + 2
and n2 + n¡q+ 2.
Case 1: n2 + n¿q + 2. In this case, �4 − 1¿0, so the radial part is negative for all

values of r¿0 and approaches negative in�nity as r approaches 0 and as r approach in�nity.
Thus, function has at least one extrema in the interval (0;∞). The extrema of the radial part
are found by setting the derivative to zero and solving for r, which yields

r=R
(
�3(�3 − 1)
�4(�4 − 1)

)1=�2
(A56)

which shows that there is only one extrema in the interval (0;∞), which is a maximum.
Thus, the minimum of the radial part on the interval [1; R] must occur at the endpoints. At
the endpoints, the radial part is

@Radn
@r

(1) =
R�2�3 − �4
R�2 − 1
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@Radn
@r

(R) =
R�2�3R�3−1 − �4R�4−1

R�2 − 1 =
(�3 − �4)R�4−1

R�2 − 1

=−�2R�4−1

R�2 − 1 (A57)

To demonstrate when the value at r=1 is more negative than the value at r=R, consider
the following function of R:

F(R)=R�2�3 − �4 + �2R�4−1 (A58)

If F¡0, then the value at r=1 is greater than the value at r=R. Clearly, F(1)=0, and
limR→∞ F(R)= − ∞. If F has no critical points between 1 and ∞, then the functional is a
negative, monotonically decreasing function for R¿1. To identify the critical points, set the
derivative of F(R)=0, or

F′(R)= �2R�2−1�3 + (�4 − 1)�2R�4−2 = 0 (A59)

Rearranging,

R�2+1−�4 =
1− �4
�3

(A60)

The critical points of F(R) will be greater than 1, only if

1− �4
�3

¿ 1 (A61)

which will occur whenever q¡ − 2. Hence, when q¿ − 2, the critical point of F(R) is less
than one, so that F(R)¡0 for all values of R¿1, and the radial part is more negative at r=1
than at r=R. Thus, the maximum allowable deformation occurs at r=1 and must satisfy

|amn||Tm
n (cos �)| ¡

2(R�2 − 1)
�2(R�2 + 1) + (q+ 1)(R�2 − 1) (A62)

Case 2: n2 + n= q+ 2. In this case, �4 − 1=0, so the radial part Radn(r) simpli�es to

Radn(r)= − Rq+3(q+ 2)r−q−3 + 1
Rq+3 − 1 (A63)

This function approaches −∞ as r approaches 0 and approaches −(1=Rq+3 − 1) as r
approaches ∞. It is a negative function for all positive values of r and is monotonically
increasing with r. Hence, on the interval [1; R], it is most restrictive at r=1, and the same
maximum allowable deformation applies.
Case 3: n2 + n¡q + 2. Following the derivation given above, since n2 + n¡q + 2, then

�4 − 1¡0. Under these circumstances, the radial part approaches negative in�nity as r ap-
proaches 0 and approaches 0 as r approaches in�nity. The critical points for the radial part
satisfy the following equation:

r=R
(
�3(�3 − 1)
�4(�4 − 1)

)1=�2
(A64)
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The fraction under the radical is negative, because �3¡0 and 0¡�4¡1. Hence, there is no
critical point for r¿0, the radial part is a negative monotonically increasing function of r, the
most negative value occurs when r=1, and the same restriction for the maximum allowable
deformation holds.

Theorem 6.1.2b
For the 3D modi�ed Laplacian with q¡− 2, when the deformation direction is purely radial,
the maximum allowable deformation for the frequency solutions occurs at r=1, if the outer
radius R satis�es R�2�3+�2R�4−1¡�4, where �3 = −q−1−�2=2 and �4 = −q−1+�2=2. Under
these circumstances, then the maximum allowable deformation is as follows:

|amn||Tn
m(cos �)| ¡

2(R�2 − 1)
�2(R�2 + 1) + (q+ 1)(R�2 − 1) (A65)

Proof
Following the derivation given above, if q¡0, then the functional F(R) is positive for all R
between 1 and Rmax. It is then negative for all values R¿Rmax. If R satis�es the conditions
of the theorem, then F(R)¡0, and the radial part is more negative at r=R than at r=1.
Thus, under the conditions of the theorem, the maximum allowable deformation occurs at

r=1 and satis�es

|amn||Tn
m(cos �)| ¡

2(R�2 − 1)
�2(R�2 + 1) + (q+ 1)(R�2 − 1) (A66)
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